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The Uniaxial Brickwork Model, Exact Results, and 
CVM Approximation 
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A complete phase diagram of the uniaxial brickwork lattice is determined first 
by using exact results, and then by using the cluster variation method. Both 
results are in very good agreement, which demonstrates the reliability of the 
CVM for two-dimensional systems. A well-defined maximum in the exact 
specific heat and a divergence of the CVM susceptibility provide strong 
indication for the occurrence of a floating phase. 
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The anisotropic next-nearest-neighbor Ising (ANNNI)  model has been the 
object of many studies, since it is one of the simplest models for exhibiting 
commensurate or incommensurate modulated phases; for a recent review 
see Refs. 1, 2. In particular, much attention has been paid to the two- 
dimensional version of the model since there is some evidence for an 
incommensurate floating phase possessing no long-range order and charac- 
terized by algebraically decaying correlation functions. 

The transition between the incommensurate phase and the disordered 
one is believed to be similar to that of the X - Y  model. Dislocation-like spin 
configurations (3'4) (in the 2-d A N N N I  model) play the role of the vortices 
of the Kosterlitz-Thouless theory. (s'6) As in the X - Y  model, no exact 
results are presently available for the ordinary 2-d A N N N I  model. This has 
led some authors ~7's'9) to the study of a new model, the uniaxial brickwork 
lattice (UBL) which is exactly soluble. The purpose of this Communication 
is twofold: to present evidence for the existence of a floating phase in the 
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UBL, although it has been argued previously (8) that no such phase should 
exist in this case, and to compare the exact phase diagram to the one deter- 
mined by the CVM. We shall determine the temperatures T m where the 
transition between the floating and disordered phases occurs and the tem- 
perature T2 where the susceptibility diverges. But first, the locus of second- 
order transitions Tc between disordered and ordered phases will be deter- 
mined. Temperatures To and Tin, as functions of interaction parameter 
ratios, are determined exactly, T2 in an approximate manner. There will 
result a complete phase diagram. 

The UBL is represented in Fig. 1. Along the vertical direction, connec- 
ted nearest-neighbors interact with ferromagnetic (Jo<0) coupling while, 
along the horizontal direction, ferromagnetic interactions between nearest 
neighbors (alternatively Jx and J3) compete with antiferromagnetic interac- 
tions (J'~2>0) between next-nearest neighbors. If I J31 ~ ]Jll, the ground 
state is ferromagnetic for K =  J2/IJ31 < �89 and goes over, for K >  �89 to a (2 )  
antiphase state (see Fig. 1 ). The point K = �89 is infinitely degenerate. Unlike 
the second ANNNI model, there is no crossing between interactions Jo and 
J2; the UBL is then a planar Ising model which is exactly soluble. The par- 
tition function can be evaluated by a generalization of the Kac and Ward 
method, (1~ equivalent to the Pfaffian method used in Refs. 7 and 8. For the 
singular part of the free energy, we obtain 

k~T fl 1 
Fsi,g- -4 Jo fo lndetM(p,q,  Ji, t) dpdq (1) 

where Ji represents the set (Jo, J1, J2, J3) and M(p, q, Ji, T) is a 10 x 10 
matrix (this matrix is smaller than the one used in the Pfaffian method). 

Fig. 1. The uniaxial brickwork lattice. Full circles (open) represent "up" ("down") spins in 
the (2) phase. 
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Our first purpose is to determine the lines of second-order phase trans- 
itions, To. The only possibility for F to be singular for any values of the 
interactions J~ and T is given by setting det M(p, q, J~, T) = 0. If J1 = J3, we 
find only one critical temperature for K < �89 and no transition for K > �89 due 
to infinite degeneracy at T =  0. If J1 :fi J3,  this degeneracy is removed and 
there is one and only one critical temperature for all K (with T~ = 0 for 
K =  �89 These results agree with those of Refs. 7-9. In order to handle the 
entire range of frustration effects ( K = 0  to oo) we introduce a different 
p a r a m e t e r  ~ to  d e t e r m i n e  t h e  c o m p e t i n g  effect  a l o n g  t h e  a n i s o t r o p i c  d i rec -  

t i o n  

J 2 / J o  = - - ~ ,  J3/Jo = 1 - ~ ,  J l / J o  = 1 

Thus, as ~ varies from 0 to 1, our model changes continuously from a 
honeycomb lattice at c~=0 to a square lattice at e =  1 with isotropic 
nearest-neighbor interactions. The results are summarized in the phase 
diagram presented in Fig. 2, where we note that the transition lines To(~) 
go down to the multiphase point c~ = 1, T =  0. 3 

3 Tc is given by p = q = 0 for c~ < �89 p = q = 1 for c~ > �89 this is related to the ground states: 
ferromagnetic phase for e < �89 and ( 2 )  phase for 7 > �89 
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F i g .  2. Phase diagram of the uniaxial brickwork model. Full lines represent the exact critical 
temperatures T~, dashed lines the CVM results. The exact locations Tm(C Q of maxima of the 
specific heat are shown by the dot-dashed line, and T2(c Q by the dotted line. The insert shows 
the region of the multiphase point c~ = 31 on an expanded scale. 
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Up to this point, and according to the previous analysis in terms of 
nonanalycity of the free energy, the phase diagram of the UBL seems not 
to display a floating phase. However, the transition between a floating 
phase and the disordered one could be of an unusual type. Inside a floating 
phase, by definition, the pair correlation function ~(R) follows an algebraic 
decay law ~I~) 

r "-~ IRI ~ cos ko' R (2) 

where R is a lattice vector and ko a wave vector which defines the 
modulation in the floating phase. In all generality, the singular exponent ~/ 
and k0 are functions of T and the parameter ~. If the analogy with the X Y 
model is relevant, there is in fact no reason a priori for the transition 
between the floating and the disordered phases to give rise to a singularity 
in the free energy as a function of T. A rigorous analysis of the X-Y model 
by Zittartz (12) has shown that the singular exponent r/(T) which governs 
the algebraic decay of the correlation functions is a smooth monotonic 
function of T which increases from 0 at T =  0 and diverges for some Tm, 
the transition temperature between the floating phase and the disordered 
one. This indicates presumably a rather smooth change to exponential 
decay above Tm, leading Zittartz to conclude that the free energy is 
analytic in T except possibly weakly singular at Tm, where F(T) is, 
however, infinitely differentiable. The specific heat is then a smooth 
(possibly analytic) function in agreement with the results of a Monte Carlo 
study of the X-Y modelJ 14) An exact treatment ~13) of an approximate 
analogy of the X-Y model with a two-dimensional plasma (5'j3) confirms 
this general picture. In previous studies of the two-dimensional ANNNI 
model ~3) and the asymmetric three-state clock model (15) using Monte-Carlo 
simulations, it was shown that a transition between a floating phase and 
the disordered one was related to a broad maximum in the specific heat 
curve. We suggest that this maximum is related to the smooth change of 
law for the pair correlation function. 

Our purpose is then to determine the exact specific heat and to deter- 
mine whether there exists, besides the singularity at T c and for some values 
of ~, a maximum which, according to the analysis presented above, could 
well correspond to a change in decay law, and hence would mark the trans- 
ition to the floating phase. We shall denote by Tm(~) the temperatures at 
which such a maximum occurs. If a maximum does exist and corresponds 
to a transition between a floating phase and the disordered one, the suscep- 
tibility :~(k) in k space should diverge for r/(~, T)~< 2 and k = ko, according 
to (2). Therefore, as the temperature is lowered, the susceptibility should 
first become infinite for some temperature, say T2, smaller than T~. For 
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Fig. 3. Exact specific heat curve for Jl/]Jo] = -l .1,  J2/lJo] = 0.55, J3/lJol = - I  (J0 < 0). The 
exact critical temperature is kBT/IJo] = 0.2880. 

fixed e, we denote  by T2(~) and  k2(0~ ) the t empera tu re  and  k vector  at  
which this divergence takes  place. 

In  o rde r  to de te rmine  the specific heat  C =  -T(O2F/c~T2), we have to 
evaluate  numer ica l ly  the in tegral  in (1) and  to differentiate twice with 
respect  to T. 4 We present  a typical  result  of the specific heat  in Fig. 3. 
Besides the s ingular i ty  at  To, a well-defined m a x i m u m  exists at T,~. In 
Fig. 2, we repor t  the t empera tu res  where these m a x i m a  occur  as a funct ion 
o f  e. F o r  c~ <0 .316  and  c~ >0 .352  the specific hea t  curve no longer  shows 

this well-defined m a x i m u m ,  but  there still exists a b r o a d  shoulder  on the 
specific heat  curve, ind ica t ing  that  the m a x i m u m  of the specific heat  could  
be h idden by the s ingular i ty  at  To. The  de t e rmina t ion  of  the specific heat  
m a x i m u m  Tm does not  u n a m b i g u o u s l y  prove  the existence of the f loat ing 
phase,  however.  To accompl i sh  that ,  it would  be necessary to es tabl ish  tha t  
corre la t ions  decay  accord ing  to the a lgebra ic  law (2), which canno t  be 
done readi ly  within the present  f ramework.  Ins tead,  we shall  de te rmine  
T2(c0, the t empera tu re  at  which the suscept ibi l i ty  z (k )  diverges,  accord ing  

4 As F is evaluated numerically, we have to use a discrete method to determine the specific 
heat C=--T(AZF/AT2). The error is expected to be small except near the critical tem- 
perature. This is verified as follows: We determine C first with A T -  10 -L and 6F= 10 -4 
(precision on the numerical value ofF) and then with A T -  10 2 and 6F= 10 6. The dif- 
ference between the results is always smaller than 10 -2 for IT-Tel > 5 x  10 2 We used 
Gauss integration to evaluate F. 
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to an approximate method, the cluster variation method (CVM). The 
technique used for calculating the susceptibility is described briefly in a 
companion paper. (161 

The approximate CVM entropy was determined by using two clusters: 
centered lozenge and rectangle. 5 First, the accuracy of the CVM must be 
established. For  that purpose, a critical test is provided by how well the 
critical lines of second-order transitions for the ferromagnetic and ( 2 )  
phases are reproduced. A second-order transition between the disordered 
phase and an ordered one is characterized by the divergence of the suscep- 
tibility z(k) for the k vector which determines the periodicity of the ordered 
phase. Hence, if k x and k y are the components of the k vector (in units of 
2~/a), the critical lines Tc are located at temperatures where z (k )  becomes 
infinite at k x = k y = 0 for the ferromagnetic phase and at k x = k y = �88 for the 
( 2 )  phase. The results are presented in Fig. 2. The agreement with the 
exact results is very good, especially near c~ = �89 

The interesting question now is to find out whether the susceptibility 
diverges for some k vector in the region of the phase diagram between the 
ferromagnetic and the ( 2 )  phases, where maxima of the specific heat were 
located. As explained above, this divergence should take place at T2 smaller 
than Tm. Moreover, we expect the k value for which )~(k) is (first) infinite 
when T is lowered to be a continuous function of e. For  fixed e, we find 
that the k vector where the susceptibility reaches its maximum varies con- 
tinuously with T. The maximum increases as T decreases and eventually 
becomes infinite. We report in Fig. 2 the temperatures T2(c~) and in Fig. 4 
the k vectors k2(c~) where this divergence occurs. On the ferromagnetic side, 
the T2(c~) curve meets the CVM critical line for e = 0.306, which indicates a 
direct transition between the ferromagnetic and floating phases for c~ 
between 0.306 and �89 Therefore, we expect the existence of a Lifshitz point, 
namely a point where the floating, disordered, and ferromagnetic phases 
meet. As the transition between the floating and disordered phases is 
indicated by the maximum of the specific heat, the Lifshitz point should be 
located where Tin(e) intersects the line separating the ferromagnetic and 
floating phases. By extrapolating the exact curve Tm(C~), we surmise that the 
Lifshitz point should be close to c~ = 0.306. On the ( 2 )  side, T2(ct) seems to 
drop down to c~ = �89 where it meets the CVM transition line for the ( 2 )  
phase. Therefore, it is possible for the exact Tm(C~ ) curve to drop down to 
the multiphase point c~ = ~, through the small gap between T2(~) and the 
( 2 )  phase boundary. Hence, we can draw no conclusion concerning the 
existence of a Lifshitz point on the ( 2 )  side of the phase diagram. Due to 
the particular topology of the UBL, a modulation along the anisotropy 

5 The choice of these clusters was proposed to us by R. Kikuchi and J. Kulik. 
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direction creates another modulation along the perpendicular axis if 
J~ #J3-  Thus, two components of k2(c~) are reported in Fig. 4. The two cur- 
ves are continuous functions, which indicates that k~ and k~ are incommen- 
surate almost everywhere. The lines come together for c~ = 0.306, with k~ = 
k~ = 0 as T2(c~) meets the transition line of the ferromagnetic phase. At the 
other end, they also seem to meet for ~ = �89 with k~ = k~ = �88 

In conclusion, we have shown the existence of a well-defined 
maximum in the specific heat of the UBL for suitable values of the interac- 
tion parameters. By using the CVM, we have related this maximum to the 
divergence of the susceptibility at lower temperatures, supporting the idea 
that a floating phase is present in this model. The comparison between the 
exact and the CVM results for the critical lines proves that the CVM is an 
effective and accurate method, even in two-dimensional space. Two-dimen- 
sional ANNNI model results are reported in a companion paper in this 
volume. 
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